
Solving Kepler’s Equation

M. Atakan Gürkan

1 The problem

Solving Kepler’s equation for arbitrary epoch and eccentricity is a common
problem in celestial mechanics. Below, I present my implementation of such a
solver, written in C. It is an extension of Shepperd’s (1985) work, and uses ideas
from Danby (1992) and Mikkola (1999).

Given initial position and velocity and the time interval, the code calculates
the new position and the velocity of a particle with the Hamiltonian

H =
p2

2m
− µ

r
− B2

r2
. (1)

2 Why a new routine

There are of course codes already available for this purpose; perhaps most no-
tably the SWIFT routines1. They are heavily tested and very reliable. However,
I wanted to write my own routines, for a number of reasons.

� It was not straightforward for me to reach machine accuracy with SWIFT

routines. In particular, on my laptop (AMD, x86-64) with GNU Fortran
compiler, I explicitly had to use “-mfpmath=387” flag. Unless this flag is
used, the code generated uses the double precision SSE instruction set.
Unlike the 387 coprocessor instructions, SSE instructions do not store the
temporary results in 80 bit precision. Seemingly this causes a small error
(this was pointed out to me by Patricia Verrier). However, the error is
consistent, so it adds up linearly in time, and decreasing the timestep
makes things worse.
I probably did not need machine precision in the first place, but it provides
a peace of mind.

� I wanted something compact and in C, so I could play around with it more
easily, parallelize the code, port it to GPUs etc.

� I wanted to see if continued fractions led to faster code (The speed im-
provement I obtained was negligible).

1See: http://www.boulder.swri.edu/~hal/swift.html

1

http://www.boulder.swri.edu/~hal/swift.html

� Continued fractions are intriguing on their own. The functions we need
to solve Kepler’s equation have surprisingly simple continued fraction ex-
pansions. Continued fractions allow infinite precision arithmetic (Gosper,
1972). Well, I do not know what to do about it at the moment, but it
looks very interesting.

Please note that my experience with SWIFT routines is very limited. It is pos-
sible that one can make a few modifications to increase their accuracy while
maintaining their reliability. I’d appreciate any feedback on this matter.

3 Solving Kepler’s equation

For simplicity let us initially assume B2 = 0. Then the orbit is a Keplerian
conic section. We start by calculating the quantities

r0 = |r0|, v0 = |v0|, σ0 = r0·v0, β =
2µ

r0

− v2

0
, (2)

where r0 and v0 are the initial position and velocity vectors, respectively. If
β > 0, we have an elliptical orbit and can calculate the period

P = 2πµβ−3/2 , (3)

and the quantity

δU = n2πβ−5/2, n =

⌊

δt + P/2 − 2σ0/β

P

⌋

, (4)

where δt is the given time interval. This will be useful if δt > P , a situation
that I do not encounter since I always choose timesteps much shorter than the
period.

For our independent variable, we choose the initial value u = 0. The main
loop consists of the following steps (prime denotes differentiation with respect

2

to u):

q =
βu2

1 + βu2
, (5)

q′ =
2βu

(1 + βu2)2
, (6)

q′′ =
2β

(1 + βu2)2
− 8β2u2

(1 + βu2)3
, (7)

Ũ0 = 1 − 2q , (8)

Ũ1 = 2(1 − q)u , (9)

U =
16

15
Ũ1

5

G5(q) + δU , (10)

U0 = 2Ũ0

2 − 1 , (11)

U1 = 2Ũ0Ũ1 , (12)

U2 = 2Ũ1

2

, (13)

U3 = βU + U1U2/3 , (14)

r = r0U0 + σ0U1 + µU2 , (15)

r′ = 4(1 − q)(σ0U0 + (µ − βr0)U1) , (16)

r′′ = −4q′(σ0U0 + (µ − βr0)U1) + 16(1 − q)2(−βσ0U1 + (µ − βr0)U0) ,
(17)

∆t = r0U1 + σ0U2 + µU3 , (18)

f = ∆t − δt , (19)

f ′ = 4(1 − q)r , (20)

f ′′ = 4(r′(1 − q) − rq′) , (21)

f ′′′ = −8r′q′ − 4rq′′ + 4(1 − q)r′′ , (22)

δu1 = −f/f ′ , (23)

δu2 = −f/(f ′ + δu1f
′′/2) , (24)

δu3 = −f/(f ′ + δu2f
′′/2 + δu2

2
f ′′′/6) , (25)

u = u + δu3 . (26)

Once the increment δu3 or f is smaller than a preset tolerance, we exit the
loop. The function G5(x) is a special case of Gauss’s hypergeometric function:
G5(x) = 2F1(5, 1; 7/2;x) (Abramowitz and Stegun, 1972, Ch. 15). The position

3

and velocities are calculated by

f = 1 − (µ/r0)U2 , (27)

g = r0U1 + σ0U2 , (28)

F = −µU1/(rr0) , (29)

G = 1 − (µ/r)U2 , (30)

r = fr0 + gv0 , (31)

v = Fr0 + Gv0 . (32)

This method of solution is almost identical to Shepperd’s. The only thing I did
is to increase the order of the iteration by using Danby’s technique. In the actual
implementation, if q > 1/2 during iteration, or if convergence is not achieved
after 12 iterations, we stop, and try to cover δt in two steps of δt/2.

When B2 6= 0, we need two modifications. In the following, I adopt the
approach of Mikkola (1999); see that paper for generating functions etc. First
note that in the plane of motion, we can transform to polar coordinates (r, θ)
and write the Hamiltonian as

H =
1

2

(

p2

r +
p2

θ

r2

)

− µ

r
− B2

r2

=
1

2

(

p2

r +
p2

θ − 2B2

r2

)

− µ

r

=
1

2

(

p2

r +
p2

ψ

r2

)

− µ

r
,

(33)

which is in Keplerian form. The first modification is

β =
2µ

r0

− v2

0
+

2B2

r2

0

. (34)

Furthermore, we cannot use f -g formulation directly, so at the end of the loop,
we revert to a more general method, which is applicable for any motion with a

4

radial force:

pθ = r0 × v0 , (35)

p2

ψ = p2

θ − 2B2 , (36)

f = 1 − (µ/r0)U2 , (37)

g = r0U1 + σ0U2 , (38)

ξ =
g

r2

0
f + σ0g

, (39)

yψ = ξat1(p
2

ψξ2) , (40)

ṙ = (σ0U0 + (µ − βr0)U1)/r , (41)

θ2 = p2

θy
2

ψ , (42)

r =
r

r0

(c0(θ
2)r0 + yψc1(θ

2)pθ × r0) , (43)

v =
ṙ

r
r +

1

r2
pθ × r . (44)

In this formulation c0(x
2) and c1(x

2) are Stumpff functions, and at1(x
2) is

arctan(x)/x. All these functions, and the function G5(x) mentioned earlier,
have simple continued fraction expansions. However, in my implementation,
I only calculate G5(x) by continued fraction expansion to keep things simple.
An efficient way to do this is given by (Shepperd, 1985). For calculating c0

and c1 by continued fractions, probably the best way is to use the approach
of Flanders and Frame (1987). The continued fraction for at1(x) goes back to
Lambert (1770) and Lagrange (1776) according to Olds (1963, Appendix II,
formula 14):

at1(x) =
arctan(

√
x)√

x
=

1

1 +
1 · x

3 +
4 · x

5 +
9 · x

7 +
16 · x

9 +
25 · x
. . .

. (45)

References

M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Dover,
New York, 1972.

J. M. A. Danby. Fundamentals of celestial mechanics, 2nd ed. Willman-Bell,
Richmond, 1992.

5

Harley Flanders and J. Sutherland Frame. Algorithm of the bi-month: Elemen-
tary transcendental functions. The College Mathematics Journal, 18(5):417–
421, 1987. ISSN 07468342. URL http://www.jstor.org/stable/2686970.

R. W. Gosper. Continued Fractions. MIT HAKMEM

Artificial Intelligence Memo, no 239:item 101, 1972.
http://www.inwap.com/pdp10/hbaker/hakmem/cf.html and
http://keithbriggs.info/cfup.htm.

S. Mikkola. Efficient Symplectic Integration of Satellite Orbits. Celestial Me-

chanics and Dynamical Astronomy, 74:275–285, August 1999. doi: 10.1023/A:
1008398121638.

Carl Douglas Olds. Continued Fractions. Random House, 1963.

S. W. Shepperd. Universal Keplerian state transition matrix. Celestial Mechan-

ics, 35:129–144, February 1985.

6

http://www.jstor.org/stable/2686970
http://www.inwap.com/pdp10/hbaker/hakmem/cf.html
http://keithbriggs.info/cfup.htm

	The problem
	Why a new routine
	Solving Kepler's equation

